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The cellular method potential has a discontinuous derivative
midway between lattice points, but the actual potential 1s quite
flat there.



A potential that overcomes both objections is [the muffin-tin potential,

which 1s

taken to represent an isolated ion within a sphere of specified radius r, about each lat-
tice point, and taken to be zero (i.e., constant) elsewhere (with r, chosen small enough
that the spheres do not overlap). (See Figure 11.6.) The muffin-tin potential mitigates
both problems, being flat in the interstitial regions, and leading to matching conditions

on a spherical rather than a polyhedral surface.

Formally, the muffin-tin potential can be defined (for all R) by:

Urx) = V(r — R|), when|r — R| <ry (the core or atomic region),
= V(ro,) =0, whenl|r — R| > ry (the interstitial region),

where@is less than half the nearest-neighbor distance.'?
N

(11.13)

If we agree that the function V(r) is zero when its argument exceeds r,, then we

can write U(r) very simply as

Ulr) = ZR: V(e — R)).

(11.14)

Two methods are in wide use for computing the bands in a muffin-tin potential: the
augmented plane-wave (APW) method and the method of Korringa, Kohn, and

Rostoker (KKR).
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(a) The muffin-tin potential, plotted along a line of ions. (b) The
_muffin-tin potential is constant (zero) in the interstitial regions and
represents an isolated ion in each core region.




THE AUGMENTED PLANE-WAVE METHOD (APW)

This approach, due to J. C. Slater,* represents y,(r) as a superposition of a finite
number of plane waves in the flat interstitial region, while forcing it to have a more
rapid oscillatory atomic behavior in the core region. This is achieved by expanding
Wy in a set of augmented plane waves.'> The APW ¢, , is defined as follows:

1. ¢y, = €*'" in the interstitial region. It is important to note that there is no
constraint relating & and k (such as, for example, & = h%k?/2m). One can define

an APW for any energy & and any wave vector k. Thusany single APW>loes

not satisfy thchrddinger equation for energy & in the interstitial region.
¢y 1s continuous at the boundary between atomic and interstitial regions.

3. Inthe atomic region about R, ¢, , does satisfy thechrt’)dinger equation:

hz
= 5= V() + V(I — R)gulr) = e, |t — R <ro.  (1L15)

Since k does not appear in this equation, ¢, . gets its k dependence only via the
boundary condition (2) and the k dependence determined by (1) in the interstitial
region.



It can be shown that these conditions determine a unique APW ¢, , for all k
and &. Note that in the interstitial region the APW satisfies not (11.15) but Ho, . =
(h*k?/2m)¢, ;. Note also that, in general, ¢, will have a discontinuous derivative on
the boundary between interstitial and atomic regions, so that V*¢, , will have delta-
function singularities there.

The APW method tries to approximate the correct solution to the crystal
Schrodinger equation (11.1) by a superposition of APW’s, all with the same energy.
For any reciprocal lattice vector K the APW ¢, k. satisfies the Bloch condition
with wave vector k (Problem 2), and therefore the expansion of y,(r) will be of the
form

Y(r) = Z Cx¢k+x,a(k)(f), (11.16)

K

where the sum is over reciprocal lattice vectors.

By taking the energy of the APW to be the actual energy of the Bloch level, we
guarantee that i, (r) satisfies the crystal Schrodinger equation in the atomic regions.
The hope is that not too many augmented plane waves will suffice to approximate
the solutions to the full Schrédinger equation in the interstitial region'® and at the
boundary. In practice, as many as a hundred APW’s can be used; by the time this
stage is reached, &(k) does not change appreciably when more APW’s are added, and
one feels with some confidence that good convergence has been achieved.




Because each APW has a discontinuous derivative at the boundary of the atomic
and interstitial regions, it is best to work not with the Schrédinger equation but with

an equivalent variational principle:

Given any differentiable (but not necessarily twice differentiable)!” function ¥ (r),
define the energy functional:

J(—lep )|> + Ulr) |¢(r)|2) dr
Jllﬁ(r)l2 dr

It can be shown'® that a solution to the Schrodinger equation (11.1) satisfying the
Bloch condition with wave vector k and energy &(k) makes (11.17) stationary with
respect to differentiable functions /(r) that satisfy the Bloch condition with wave
vector k. The value of E[y, ] is just the energy &(k) of the level y,.

(11.17)

E[y] =

The variational principle is exploited by using the APW expansion (11.16) to
calculate E[y, ]. This leads to an approximation to &k) = E[y, ] that depends on
the coefficients c¢x. The demand that E[y, | be stationary leads to the conditions
0E/dck = 0, which are a set of homogeneous equations in the cg. The coefficients

in this set of equations depend on the sought for energy &(k), both through the &(k)
dependence of the APW’s and because the value of E[, | at the stationary point
is &(k). Setting the determinant of these coefficients equal to zero gives an equation
whose roots determine the &(k).




As in the cellular case, it is often preferable to work with a set of APW’s of definite
energy and search for the k at which the secular determinant vanishes, thereby
mapping out the constant energy surfaces in k-space. With modern computing
techniques it appears possible to include enough augmented plane waves to achieve
excellent convergence,'® and the APW method is one of the more successful schemes

for calculating band structure.?®

In Figure 11.7 we show portions of the energy bands for a few metallic elements,
as calculated by L. F. Mattheiss using the APW method. One of the interesting results
of this analysis is the extent to which the bands in zinc, which has a filled atomic
d-shell, resemble the free electron bands. A comparison of Mattheiss’ curves for

titanium with the cellular calculations by Altmann (Figure 11.8) should, however,
instill a healthy sense of caution: Although there are recognizable similarities, there
are quite noticeable differences. These are probably due more to the differences in
choice of potential than to the validity of the calculation methods, but they serve to
indicate that one should be wary in using the results of first principles band-structure
calculations.
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Figure 11.7
APW energy bands for iron, copper, and zinc, calculdted by L. F.
Mattheis, Phys. Rev. 134, A970 (1964). The bands are plotted from the
origin of k-space to the points indicated on the zone surfaces. Note the
striking resemblance between the calculated bands of zinc and the free
electron bands (pictured to the right). Zinc has two s-electrons outside
of a closed-shell configuration. The horizontal dashed lines mark the

Fermi energy.
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Figure 11.8
Three calculated band structures for titanium. Curves (a) and (b) were calculated by the cellular

method for two possible potentials. They are taken from S. L. Altmann, in Soft X-Ray Band
Spectra, D. Fabian (ed.), Academic Press—London, 1968. Curve (c) is from the APW calculation

of Mattheis.



THE ORTHOGONALIZED PLANE-WAVE METHOD (OPW)

An alternative method of combining rapid oscillations in the ion core region with
plane-wavelike behavior interstitially, is the method of orthogonalized plane waves,
due to Herring.>> The OPW method does not require a muffin-tin potential to make

calculations feasible, and is therefore of particular value if one insists on using an
undoctored potential. In addition, the method affords some insight into why the
nearly free electron approximation does so remarkably well in predicting the band
structures of a variety of metals.

We begin by explicitly distinguishing between the core electrons and the valence
electrons. The core wave functions are well localized about the lattice sites. The
valence electrons, on the other hand, can be found with appreciable probability in
the interstitial regions, where our hope is that their wave functions will be well
approximated be a very small number of plane waves. Throughout this and the next
section we shall affix superscripts ¢ or v to wave functions to indicate whether they
describe core or valence levels.




The difficulty with approximating a|valence wave function [by a few plane waves
everywhere 1n space (as in the nearly iree electron method) 1s that this hopelessly
fails to produce the rapid oscillatory behavior required in the core region. Herring
noted that this could be taken care of by using not simple plane waves, but plane

waves orthogonalized to the core levels right from the start. Thus we define the
orthogonalized plane wave (OPW) ¢, by:

OPW VaIencle wave function Gy = e*r + Z ch(r), (11.24)

where the sum is over all core levels with Bloch wave vector k. The core wave functions
are assumed to be known (generally they are taken to be tight-binding combinations
of calculated atomic levels), and the constants b, are determined by requiring that

¢, be orthogonal to every core level:*®

—> J dr YE*(r)g(r) = 0, (11.25)

which implies that

b, = — J-dr Yi*(r)e™ " (11.26)




The OPW ¢, has the following properties characteristic of valence level wave
functions:

1. By explicit construction it 1s orthogonal to all the core levels. It therefore also
has the required rapid oscillations in the core region. This is particularly evident
from (11.24), since the core wave functions ¥,(r) appearing in ¢, themselves
oscillate in the core region.

2. Because the core levels are localized about lattice points, the second term in
(11.24) is small in the interstitial region, where ¢, is very close to the single plane
wave e* ",

Since the plane wave ¢* " and the core wave functions ,(r) satisfy the Bloch

condition with wave vector k, so will the OPW ¢,. We may therefore, as in the APW
method, seek an expansion of the actual electronic eigenstates of the Schrodinger
equation as linear combinations of OPW’s:

Ui = ) CkPrsk- (11.27)

K




As in the APW method, we can determine the coefficients ¢, in (11.27) and the energies
&(k) by inserting (11.27) into the variational principle (11.17), and requiring that the
derivatives of the resulting expression with respect to all the ¢,’s vanish. The crystal

potential U(r) will enter into the resulting secular problem only through its OPW
matrix elements:

J G x@UX) Py (r) dr (11.28)

The OPW method owes its success to the fact that although the plane-wave
matrix elements of U are large, its OPW matrix elements turn out to be much smaller.

Therefore, although it is hopeless to try to get convergence by expanding v, in plane
waves, the convergence of the expansion in OPW’s is very much faster.



Pseudopotential Methods (Kittel Chapter 9)

Conduction electron wavefunctions are usually smoothly varying in the
region between the ion cores, but have a complicated nodal structure in the
region of the cores. This behavior is illustrated by the ground orbital of sodium,
Fig. 19. It is helpful to view the nodes in the conduction electron wavefunction
in the core region as created by the requirement that the function be orthogo-
nal to the wavefunctions of the core electrons. This all comes out of the Schré-
dinger equation, but we can see that we need the flexibility of two nodes in the
3s conduction orbital of Na in order to be orthogonal both to the 1s core orbital
with no nodes and the 2s core orbital with one node.

Outside the core the potential energy that acts on the conduction electron
is relatively weak: the potential energy is only the coulomb potential of the
singly-charged positive ion cores and is reduced markedly by the electrostatic
screening of the other conduction electrons, Chapter 10. In this outer region
the conduction electron wavefunctions are as smoothly varying as plane waves.




It the conduction orbitals in this outer region are approximately plane
waves, the energy must depend on the wavevector approximately as ¢ =
#°k*/2m as for free electrons. But how do we treat the conduction orbitals in the
core region where the orbitals are not at all like plane waves?

What goes on in the core is largely irrelevant to the dependence of € on k.
Recall that we can calculate the energy by applying the hamiltonian operator to
an orbital at any point in space. Applied in the outer region, this operation will
give an energy nearly equal to the free electron energy.

This argument leads naturally to the idea that we might replace the actual

potential energy (and filled shells) in the core region by an effective potential

energy’ that gives the same wavefunctions outside the core as are given by the

actual ion cores. It is startling to find that the effective potential or pseudopo-

tential that satisfies this requirement is nearly zero. This conclusion about

pseudopotentials is supported by a large amount of empirical experience as well
as by theoretical arguments. The result is referred to as the cancellation theo-
rem.




Empty Core Model

The pseudopotential for a problem is not unique nor exact, but it may be
very good. On the Empty Core Model (ECM) we can even take the unscreened
pseudopotential to be zero inside some radius R,:

( ) 0 , for r <R, : (21)
—e?/r . for r >R, .

This potential should now be screened as described in Chapter 10. Each com-
ponent U(K) of U(r) is to be divided by the dielectric constant €(K) of the

electron gas. If, just as an example, we use the Thomas-Fermi dielectric func-

tion (10.33), we obtain the screened pseudopotential plotted in Fig. 22a.

The pseudopotential as drawn is much weaker than the true potential, but
the pseudopotential was adjusted so that the wavefunction in the outer region is

nearly identical to that for the true potential. In the language of scattering
theory, we adjust the phase shifts of the pseudopotential to match those of the

true potential.



Calculation of the band structure depends only on the Fourier components

of the pseudopotential at the reciprocal lattice vectors. Usually only a few val-
ues of the coefficients U(G) are needed to get a good band structure: see the
U(G) in Fig. 22b. These coeflicients are sometimes calculated from model po-
tentials, and sometimes they are obtained from fits of tentative band structures
to the results of optical measurements. Good values of U(0) can be estimated
from first principles; it is shown in (10.43) that for a screened Coulomb poten-
tial U(0) = —3ep.

In the remarkably successful Empirical Pseudopotential Method (EPM)
the band structure is calculated using a few coefficients U(G) deduced from
theoretical fits to measurements of the optical reflectance and absorption of

crystals, as discussed in Chapter 11. Tables of values of U(G) are given in the
review by M. L. Cohen and V. Heine.

Charge density maps can be plotted from the wavefunctions generated by
the EPM—see Fig. 3.11. The results are in excellent agreement with x-ray
diffraction determinations; such maps give an understanding of the bonding
and have great predictive value for proposed new structures and compounds.



The EPM values of the coefficients U(G) often are additive in the contribu-
tions of the several types of ions that are present. Thus it may be possible to
construct the U(G) for entirely new structures, starting from results on known
structures. Further, the pressure dependence of a band structure may be de-
termined when it is possible to estimate from the form of the U(r) curve the
dependence of U(G) on small variations of G.

It is often possible to calculate band structures, cohesive energy, lattice
constants, and bulk moduli from first principles. In such ab initio pseudopoten-
tial calculations the basic inputs are the crystal structure type and the atomic
number, along with well-tested theoretical approximations to exchange energy

terms. This is not the same as calculating from atomic number alone, but it is
the most reasonable basis for a first-principles calculation. The results of M. T.
Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982), are compared with experi-
ment in the table that follows.



Silicon
Calculated
Experimental

Germanium
Calculated
Experimental

Diamond
Calculated
Experimental

Lattice

Cohesive

Bulk

constant energy modulus
(A) | (eV) (Mbar)
5.45 4.84 0.98
5.43 4.63 0.99
5.66 4.26 0.73
5.65 3.85 0.77
3.60 8.10 4.33
3.57 7.35 4.43
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Figure 22a Pseudopotential for metallic sodium, based on the empty core model and screened by
the Thomas-Fermi dielectric Tunction. The calculations were made for an empty core radius R, =
1.66a,, where a, is the Bohr radius, and for a screening parameter k,a, = 0.79. The dashed curve
shows the assumed unscreened potential, as from (21). The dotted curve is the actual potential of
the ion core; other values of U(r) are —50.4, —11.6, and —4.6, for r = 0.15, 0.4, and 0.7, respec-
tively. Thus the actual potential of the ion (chosen to fit the energy levels of the free atom) is very

much larger than the pseudopotential, over 200 times larger at r = 0.15.



Potential U(k)

Wavevector k

Figure 22b A typical reciprocal space
pseudopotential. Values of U(k) for
wavevectors equal to the reciprocal
lattice vectors, G, are indicated by the
dots. For very small k the potential
approaches (—2/3) times the Fermi
energy, which is the screened-ion limit
for metals. This limit is derived in
Chapter 10. (After M. L. Cohen.)



THE PSEUDOPOTENTIAL (AM Chapter 11)

The theory of the pseudopotential began as an extension of the OPW method. Aside
from the possibility it offers of refining OPW calculations, it also provides at least a
partial explanation for the success of nearly free electron calculations in fitting actual
band structures.

We describe the pseudopotential method only in its earliest formulation,?® which
1s basically a recasting of the OPW approach. Suppose that we write the exact wave
function for a valence level as a linear combination of OPW’s, as in (11.27). Let
¢.” be the plane-wave part of this expansion:

V . _ ;
¢’ : the plane-wave part.of the () = Z C*HE (11.29)
exact valence wave function vy, " K

Then we can rewrite the expansions (11.27) and (11.24) as
J dr' Y ()M )) V(). (11.30)

b ,;
Since ,” 1s an exact wéqce wave function, it satisfies Schrodinger’s equation with
eigenvalue &,":

Hy,’ = 8.°0,". (11.31)

Substitution,df (11.30) into (1£.31) gives j\

Hpw — Y ( J dr wa*(p.:‘) Hy = 8, (¢ =) ( J dr wa*w) w) (11.32)

c c



If we note that Hy,* = &, for the exact core levels, then we can rewrite (11.32) as

(H + V' = & ", (11.33)

where we have buried some rather cumbersome terms in the operato which is
defined by

AEDICEES ( J dr w;*.p) e (11.34)

We have therefore arrived at an effective Schrodinger equation (11.33) satisfied b
., the smooth part of the Bloch function. Since experience with the OPW method
suggests that ¢,” can be approximated by a linear combination of a small number
of plane waves, we might expect that the nearly free electron theory of Chapter 9
could be applied to finding the valence levels of H + V. This is the starting point
for pseudopotential calculation and analysis.




The pseudopotential is defined to be the sum of the actual periodic potential U,
and VR: '

52 \/pseudo — U+ \/R
H+ VR = — V2 4 yroste | au3s)
<0 >0

The hope is that the pseudopotential is sufficiently small to justify a nearly tree electron
calculation of the valence levels. One can see a hint that this might be so from the
fact that although the actual periodic potential is attractive near the ion cores, and
thus (Y, Uy) = [ dr y*(r)U(r)Y(r) is negative, the corresponding matrix element of

the potential V¥ is, according to (11.34),
2
W, VRY) = ) (8" — &) : (11.36)

f dr Yi*y

Since the valence energies lie above the core energies, this is always positive. Thus

adding V® to U provides at least a partial cancellation, and one might optimistically

hope for it to lead to a potential weak enough to do nearly free electron calculations
for ¢,” (the so-called pseudo wave function), treating the pseudopotential as a weak

perturbation.




There are some peculiar features to the pseudopotential. Equation (11.34) implies
that VX (and hence the pseudopotential) is nonlocal; i.e., its effect on a wave function
Y (r) is not merely to multiply it by some function of r. In addition, the pseudopotential
depends on the energy of the level being sought, &,”, which means that many of the
basic theorems one is used to applying without further thought (such as the orthog-
onality of eigenfunctions belonging to different eigenvalues) are no longer applicable
to Hpscudo.

The second difficulty can be removed by setting &' in (11.34) and in V™*"*°equal
to the energy of the levels one is most interested in—generally the Fermi energy. Of

course, once this replacement has been made, the eigenvalues of H + VX are no
longer exactly those of the original Hamiltonian, except for the levels at the Fermi
energy. Since these are frequently the levels of greatest interest, this need not be too

great a price to pay. For example, one can, in this way, find the set of k for which
& = &g, thereby mapping out the Fermi surface.

There turn out to be many ways other than (11.34) to define a V® such that

H + VR has the same valence eigenvalues as the actual crystal Hamiltonian H.

From such choices has arisen a wealth of pseudopotential lore, whose usefulness
for anything other than justifying the nearly free electron Fermi surfaces has yet
to be convincingly established.?®
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Figure 22a Pseudopotential for metallic sodium, based on the empty core model and screened by
the Thomas-Fermi dielectric Tunction. The calculations were made for an empty core radius R, =
1.66a,, where a, is the Bohr radius, and for a screening parameter k,a, = 0.79. The dashed curve
shows the assumed unscreened potential, as from (21). The dotted curve is the actual potential of
the ion core; other values of U(r) are —50.4, —11.6, and —4.6, for r = 0.15, 0.4, and 0.7, respec-
tively. Thus the actual potential of the ion (chosen to fit the energy levels of the free atom) is very

much larger than the pseudopotential, over 200 times larger at r = 0.15.






